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Abstract We calculate the minimum polynomial φ(x, y) of parasupercharge Q and Hamil-
tonian H for single-mode parabose parasupersymmetry (P-PSUSY). Suppose that φ(x, y)

satisfies the homogeneity ∀λ ∈ R, φ(λx,λ2y) = λnφ(x, y), then the parafermionic order pf

is restricted to either 1, 2, or 4. Under the P-PSUSY, the homogeneity of the φ(x, y) is
equivalent to the parasuperconformality of Q and H . The physical meaning of the parasu-
perconformality is discussed, in connection with the spin of the elementary particle.

Keywords Parasupersymmetry · Gröbner basis · Parasuperconformality · Neveu-Schwarz

1 Introduction

Supersymmetric quantum mechanics (SUSY QM) has many interesting applications.1 For
example, the Morse inequality can be derived from some SUSY QM Hamiltonian [2]. There
are many generalizations to the SUSY QM. One of the natural generalizations is given by
such that the fermion in the ordinary SUSY is replaced by parafermions, called parasuper-
symmetric (PSUSY) QM, which was first introduced by Rubakov and Spiridonov [3]. For
the simplest case, where the parafermionic order pf = 2, Q and H satisfy the cubic relation
of Q3 = 4QH .

It should be noticed that the cubic relation of Q3 = 4QH is the same as the relation
where the superpotential is given by the harmonic oscillator potential (HOP), as is analogous
to the ordinary SUSY, where the quadratic relation of Q2 = H for a general superpotential
is the same as the relation in which the superpotential is given by HOP. Once the polynomial
relation between Q and H is determined, the superpotential is not necessarily given by HOP.

However, the restriction to the HOP as a superpotential may be too strong to make a phys-
ically realizable PSUSY model. The reason is as follows. The ordinary bose commutation

1For a review of SUSY QM, including PSUSY, see, for example, [1].
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relation [b, b†] = 1 (for simplicity, we take a single mode into account) is realized as one of
the irreducible representations of the Z2-graded sp(2,R) = {c−, c+, h}R by h = 1

2 {c+, c−}
and c∓ = ±[c∓, h]. Called a paraboson is the particle whose annihilator (creator) is isomor-
phic to the irreducible representation of c− (c+) in the Z2-graded sp2(2,R). Quantum field
theory is compatible with the existence of parabosons [4] (although the parabosons have not
yet observed on a fundamental level). In this sense, it is reasonable to take account of the
PSUSY where the parabosonic potential is chosen as a superpotential. Such PSUSY may be
called parabose PSUSY (P-PSUSY).

To distinguish the parabosonic state, the parabosonic order pb is introduced, as analo-
gously to the parafermionic order pf , half of which amounts to the highest weight of su(2).
To obtain the polynomial relation of Q and H as ψ(Q,H) = 0, it is straightforward to use
the Fock space representation such that H is diagonalized. However, it is not so easy a mat-
ter to examine whether or not the ψ(x, y) is the minimum polynomial φ(x, y) of Q and H .
Consider, for example, the degree of φ(x, y) with respect to x, denoted by degx φ(x, y).
Contrary to the intuitive expectation that degx φ(x, y) may be given by pf + 1, as is found
in the ordinary SUSY (where pf = 1) and in the pf = 2 PSUSY, it is not necessarily true that
degx φ(x, y) = pf + 1. Due to the complicatedness of pf and pb dependence of φ(x, y), a
comprehensive study of P-PSUSY has hardly been made, except the simplest case of pf = 2.

As an application of P-PSUSY, we try to restrict the value of pf under some reasonable
condition. Suppose that the minimum polynomial φ(x, y) satisfies the homogeneity such
that ∀λ ∈ C,∃n ∈ N, φ(λx,λ2y) = λnφ(x, y). Then we obtain pf = 1,2,4. Considering the
isomorphism su(2) ∼= so(3), we can interpret pf /2 as a spin s (orbital angular momentum
may be neglected, because we deal with a spatially one-dimensional case). Thus, pf =
1,2,4 corresponds to s = 1/2,1,2, respectively. This result may be comparable to the spin
of the elementary particles.

The aim of this paper is to first calculate the minimum polynomial φ(x, y) of Q and
H for single-mode P-PSUSY, to unravel the pf and pb dependence of degx φ(x, y). Then
we show that under the P-PSUSY, the homogeneity of φ(x, y) is equivalent to the para-
superconformality of Q and H in the sense that Q,H and their generalization satisfy the
generalized Neveu-Schwarz algebra. Finally, we discuss the physical meaning of the para-
superconformality.

Before proceeding to the calculation of the minimum polynomial in P-PSUSY, it should
be remarked that there are other specific forms of PSUSY [5–8]. They are constructed in
such a way that all the nonvanishing matrix elements of the fermionic operator f are chosen
as the same, as in the form (f )nm ∝ δn,m−1. This property, however, holds for a parafermion
with pf = 1,2 only (see (5)), so that the minimum polynomial of Q and H in their work
coincides with the one in the present work only for the case of pf = 1,2.

Moreover, it should be remarked that the P-PSUSY should not be confused with
parabose-parafermi SUSY (PP-SUSY) [9–11], which is another generalization of the or-
dinary SUSY. In PP-SUSY, the relation of Q and H is the same as the ordinary SUSY, that
is, Q2 = H . To guarantee this relation, it is required that the parabosonic order pb should be
the same as the parafermionic order pf (so that the ground state energy of H turns out to be
vanishing, as in the ordinary SUSY), and that the parabosonic and parafermionic operators
should not, in general, (anti)commute with each other. For the summary, see Table 1.
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Table 1 Basic properties of SUSY and its generalizations: paraSUSY (PSUSY), parabose PSUSY
(P-PSUSY), and parabose-parafermi SUSY (PP-SUSY) for a parabosonic order pb and parafermionic or-
der pf . For the minimum polynomial, x and y correspond to the (para)supercharge Q and the Hamiltonian H ,
respectively. In the third column, super and parabose represent superpotential and parabosonic potential, re-
spectively

Symmetry (pb,pf ) Potential Minimum polynomial Commutativity

SUSY (1,1) Super x2 − y [b,f ] = 0

PSUSY (1, n) Super x(x2 − 4y) (pf = 2) [b,f ] = 0

P-PSUSY (m,n) Parabose x(x2 − 4y) (pf = 2) [b,f ] = 0

PP-SUSY (n,n) Parabose x2 − y [b,f ] �= 0

2 Parabose ParaSUSY

2.1 Preliminaries

Let b (f ) and b† (f †) denote the parabose (parafermi) annihilation and creation operators,
respectively. Let P be the set of polynomials of b,f and b†, f †. Define the maps A, C :
P → P by A(x) = 1

2 {x†, x} and C(x) = 1
2 [x†, x]. Then the set {f,f †, C(f )} forms the

2-dimensional unitary algebra su(2) (which is isomorphic to the rotation algebra s0(3)),
and the set {b, b†, A(b)} satisfies the Z2-graded sp(2,R) algebra:

f = [f, C(f )], b = [b, A(b)], (1)

and their Hermite adjoint. As is analogous to the ordinary SUSY, the parabose parasuper-
charge Q and the Hamiltonian H are given by

Q = Q + Q†, H = Hb + Hf , (2)

where Q = (Q†)† = b†f , Hb = A(b), and Hf = C(f ). Under the condition that Q is an
integral of motion, that is

[Q,H ] = 0, (3)

it is sufficient to assume that [b,Hf ] = [f,Hb] = 0. To guarantee these relations, we further
assume that b is commutative with f and f †:

[b,f ] = [b,f †] = 0. (4)

The parabosonic order pb (≥ 0) and parafermionic order pf ∈ N are introduced in a usual
context as zz†|0〉 = pz|0〉 (for z = b,f ) with |0〉 representing the (unique) vacuum state such
that z|0〉 = 0. Let |k − 1〉b and |k − 1〉f denote the k-th normalized eigenstate of Hb and Hf ,
respectively (k = 1,2, . . .). For given pb and pf , the irreducible representation of b and f

can be written as [12–15]

z|k〉z = c
(z)

k |k − 1〉z, z
†|k − 1〉z = c

(z)

k |k〉z (for z = b,f ), (5)

where c
(b)

2k = √
2k, c

(b)

2k+1 = √
2k + pb , and c

(f )

k = √
k(pf + 1 − k).

Under the above formulation, we will obtain a polynomial relation between Q and H

(other than the trivial relation of (3)). By the construction of the P-PSUSY, it will be found
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in the next section that each coefficient of the polynomial can be chosen as a real number
R for pb ≥ 0, so that we will have to obtain the polynomial φ(x, y) ∈ R[x, y] such that
φ(Q,H) = 0, where R[x, y] represents the two-variable polynomial ring over R. Due to (3),
it is apparent that φ(x, y) belongs to a commutative ring over R. There are many polynomial
relations that Q and H satisfy, so that we will concentrate on a minimum polynomial. To
obtain the minimum polynomial over R, the following lemma is useful.

Lemma 1 For n ∈ N and f (x, y), g(x, y) ∈ R[x, y],
f n(Q,H)g(Q,H) = 0 ⇐⇒ f (Q,H)g(Q,H) = 0.

Proof It is sufficient to prove for n = 2, due to the repeated application of the Lemma. It is
trivial to show ⇐=). Next, we show =⇒). For n = 2, we obtain 0 = f 2(Q,H)g2(Q,H) =
(f (Q,H)g(Q,H))2 = h†h, where h = f (Q,H)g(Q,H). Here use has been made of Q† =
Q,H † = H , [Q,H ] = 0, and f (x, y), g(x, y) ∈ R[x, y]. Noticing that h†h is semi-positive
and is vanishing if and only if h = 0, we get h = 0. �

Although the minimum polynomial φ(x, y) is uniquely determined except an overall
scalar multiplication, we will fix the scalar multiplication in the following way. From the
construction of φ(x, y), it will be found afterwards that φ(x, y) can be chosen as monic
with respect to x. Once the φ(x, y) is chosen as x-monic, it is determined uniquely.

For later convenience of dealing with a parabose operators b, b†, we introduce an Her-
mitian operator R such that it anticommutes with b. Such an operator is well known, to be
given by R = 1 + 2C(b). What is more characteristic of R is its eigenvalue: all the eigenval-
ues of R are given by ±(1 −pb). This is confirmed from the irreducible representation of b.
Rewriting R as (1 − pb)R0, we get

R
†
0 = R0, {R0, b} = 0, R2

0 = 1. (6)

2.2 Symmetry

Before calculating the minimum polynomial φ(x, y) ∈ R[x, y], we examine a symmetry
specific to the P-PSUSY. Consider the transformation T : P → P by

T :
(

z

z†

)
�→

(
z′

(z†)′

)
= Tz

(
z

z†

)
(for z = b,f ), (7)

where Tb and Tf , which are 2 × 2 complex matrices, are chosen as such that the relation of
(1) is invariant. Under the condition that H ′ (Q′) is a linear combination of Hb and Hf (Q
and Q†), we have two and only two transformations, denoted by Types A and B in Table 2.

In type A, the relation of zz†|0〉 = pz|0〉 with z|0〉 = 0 remains invariant, so that the
state vector |n〉 in the Fock space is invariant (up to an arbitrary phase); we have only to
deal with the linear operators ∈ P . This implies that, by the Wigner’s theorem [16], the
transformation T may be given by a unitary transformation. Actually, T is given by the
unitary transformation: T : z �→ z′ = UzzU

†
z (with (z†)′ = z′†), where Uz = e−iθzH (θz ∈ R)

for z = b,f .
In Type B, however, the relation of zz†|0〉 = pz|0〉 with z|0〉 = 0 does not remain. Thus,

the state vector |n〉 should be transformed so that the theory be consistent. Notice that
the spectrum of Hf is invariant as Spec(H ′

f ) = Spec(−Hf ) = Spec(Hf ) = {−pf

2 ,−pf

2 +
1, . . . ,

pf

2 } (while the spectrum of Hb is not invariant). This implies that the transformation
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Table 2 Two types of transformation matrix Tz for z = b,f , where θ = θf − θb

Type Tb Tf H ′ Q′

A H eiθ Q + e−iθ Q†
(

eiθb 0

0 e−iθb

) (
e
iθf 0

0 e
−iθf

)

B −H eiθ Q − e−iθ Q†
(

0 e−iθb

−eiθb 0

) (
0 e

−iθf

e
iθf 0

)

of f (= f,f †) may be given by an (anti)unitary transformation. Actually, the transformation
T of f is given by the antiunitary transformation: T : f �→ f′ = Ũf fŨ

†
f , where Ũf = KUf

with K defined by K(c1f |n〉 + c2f
†|m〉) = c̄1f

†|n〉 + c̄2f |m〉 (for c1, c2 ∈ C), so that K

is antiunitary. Under the transformation T : f �→ f′, the parafermionic state |n〉 should be
transformed as T : |n〉 �→ |n〉′ = Ũf |n〉, so as to make the theory consistent. For z = b,
on the other hand, T cannot be given by an (anti)unitary transformation, as is expected
from the non-invariance of the spectrum of Hb as Spec(H ′

b) = Spec(−Hb) = −Spec(Hb) �=
Spec(Hb). Actually, if b′ and b†′ were given by V bV † = e−iθbb† and V b†V † = −eiθbb (with
V V † = V †V = 1), respectively, we would have the relation of 0 = eiθb (�= 0), a contradic-
tion. The usefulness of the Type B transformation will be found in deriving, for example,
the relation of (19).

Notice that while Q and H are not necessarily invariant under (7), A(f ) and C(b) are
invariant:

A(f ) �→ A(f ), C(b) �→ C(b),

so that R �→ R. In this sense, A(f ) and C(b) (or R) may be regarded as more fundamental,
compared to Q and H .

Proposition 2 Denote by ψ(Q,H) = 0 the (polynomial) relation between Q and H for the
P-PSUSY. For C

∗ = {z ∈ C||z| = 1}, we have the following equivalence:

ψ(Q,H) = 0 ⇐⇒ ∀λ ∈ C
∗, ψ(λQ ± λ−1 Q†,±H) = 0.

Proof For given pb and pf , the (polynomial) relation between Q and H is determined by
the commutation relation of (1) (under the condition of (4)) only. Under the transformation
in Table 2, the relations of (1) and (4) are invariant, so that we have ψ(Q,H) = 0 ⇐⇒
ψ(Q′,H ′) = 0. �

Remark 3 The function ψ(x, y) in Proposition 2 is not necessarily chosen as a minimum
polynomial φ(x, y). Note further that Proposition 2 does not necessarily hold for a general
PSUSY. This is because for the P-PSUSY, there is a restriction on the parabose operator b

as b = [b,Hb], while for a general PSUSY, there is no such restriction on the parasuperpo-
tential.

3 Minimum Polynomial

In this section, we calculate the minimum polynomial φ(x, y) for a general pf ∈ N and
pb ≥ 0, to find that degx φ(x, y) is given by Table 3.



1818 Int J Theor Phys (2009) 48: 1813–1832

Table 3 degx φ(x, y) for pf ∈ N and ν (:= pb − 1)

pf ∈ N ν (≥ −1) degx φ(x, y)

Even Any real number pf + 1

Odd 0,2,4, . . . , pf − 1

Otherwise

pf + 1 + ν

2(pf + 1)

As the number pf ∈ N increases, it tends to be more and more complicated to obtain the
minimum polynomial φ(x, y) using the polynomial relations between f and f † (together
with b = [b,Hb] and R2 = ν2). Instead, we directly use the Fock space representation such
that the Hamiltonian H is diagonalized. Denote by hn the n-th eigenvalue of H . Recalling
that the ground-state energies of Hb and Hf are given by pb

2 and −pf

2 , respectively, we have

hn = pb

2
− pf

2
+ (n − 1) (n = 1,2, . . .). (8)

The eigenstates of H whose eigenvalue equals hn are given by |k〉f |n − 1 − k〉b (k =
0,1, . . . ,mim(pf ,n − 1)). As long as n ≥ pf + 1, the above eigenstates of H are (pf + 1)-
fold degenerate. Thus to obtain a polynomial relation between Q and H (not necessarily a
minimum polynomial) as ψ(Q,H) = 0, we should obtain a polynomial ψ(x, y) such that

ψ(Q,hn)|k;n〉 = 0, (for k = 0,1, . . . , pf ), (9)

where |k;n〉 := |k〉f |n − 1 − k〉b . Here use has been made of H |k;n〉 = hn|k;n〉. It should
be noticed that it is not necessary to calculate ψ(Q,hn)|k;n〉 = 0 for all k; it is sufficient to
calculate it for k = 0 only.

Lemma 4 For ψ(x, y) ∈ R[x, y],
ψ(Q,hn)|0;n〉 = 0 =⇒ ψ(Q,hn)|k;n〉 = 0 (for k = 0,1, . . . , pf ).

Proof Noticing inductively that |k;n〉 (for k = 0,1, . . . , pf ) can be written as a linear com-
bination of |0;n〉,Q|0;n〉, . . . ,Qpf |0;n〉 over the real number, and using [Q,ψ(Q,hn)] = 0,
we find that ψ(Q,hn)|0;n〉 = 0 =⇒ ψ(Q,hn)|k;n〉 = 0. �

Now we obtain the polynomial relation between Q and H as a function of pb and pf .
First of all, we calculate Q2|k;n〉, from which we obtain the following recurrence formula:

R
(n)

k+1|k;n〉 =
√

d
(n)

k−1|k − 2;n〉 +
√

d
(n)

k+1|k + 2;n〉 (for k = 0,1, . . . , pf ), (10)

with the boundary condition |−2;n〉 = |−1;n〉 = |pf + 1;n〉 = 0, where R
(n)

k+1 = Q2 −
(e

(n)
k + e

(n)

k+1) and d
(n)
k = e

(n)
k e

(n)

k+1, with e
(n)
k = (c

(f )

k c
(b)
n−k)

2. Considering the boundary con-
dition of |pf + 1;n〉 = 0, we find that for pf even (or odd), the repeated application of
(10) with k = 1,3, . . . , pf − 1 (or k = 0,2, . . . , pf − 1) yields the annihilator ψ(Q,hn) =
ψ(Q,hn;pb,pf ) of |1;n〉 (or |0;n〉), such that

ψ(Q,hn;pb,pf )|1 + pf − 2p̃f ;n〉 = 0, p̃f =
{

pf

2 (for pf even),
pf +1

2 (for pf odd),
(11)
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where ψ(Q,hn;pb,pf ) written as

ψ(Q,hn;pb,pf ) =
[p̃f /2]∑

k=0

(−1)k
∑

i∈Sk

(d
(n)
i1

d
(n)
i2

. . . d
(n)
ik

)(R
(n)
ik+1

R
(n)
ik+2

. . .R
(n)
ip̃f −k

), (12)

with n in d
(n)
i ,R

(n)
i being related to hn,pb,pf through (8). Here [x] represents the integral

part of x, and the set Sk ∈ N
p̃f −k is given using the map F : N

p̃f −k → N
p̃f −k by F(x) = 2x

for pf even (or F(x) = 2x − 1, with 1 = (1,1, . . . ,1) ∈ N
p̃f −k for pf odd) by

Sk =
⋃

m

F(m ⊕ g(m)),

where m = (m1,m2, . . . ,mk) ∈ N
k with 1 ≤ m1 ≤ m2 −2 ≤ . . . ≤ mk − (2k −2) ≤ p̃f −1−

(2k − 2), and g(m) ∈ N
p̃f −2k is constructed by eliminating from (1,2,3, . . . , p̃f ) ∈ N

p̃f the
elements of m1,m1 + 1, . . . ,mk,mk + 1. Explicitly, for pf odd

S0 = {(1,3,5, . . . , pf )},
S1 = {(1, 3̆,5,7, . . . , pf ), (3,1, 5̆,7, . . . , pf ), (5,1,3, 7̆,9, . . . , pf ), . . . ,

(pf − 2,1,3,5, . . . , pf − 4, p̆f )},

and so on, where k̆ represents the elimination of k. For later convenience, it may be useful
to expand ψ(x, y;pb,pf ) with respect to x and y as in the form

ψ(x, y;pb,pf ) =
p̃f∑

k=0

ak(y)x2(p̃f −k), ak(y) = p̃f !
(p̃f − k)!

k∑

i=0

α
(k)
i yi, (13)

where α
(0)

0 = 1 and the coefficients α
(k)
i (k = 1,2, . . .) are to be calculated afterwards. The

factor 1/(p̃f − k)! is simply introduced to guarantee the vanishing of ak(y) for k > p̃f .
Different from the functional form c

(b)
k in (5) for k odd or even, the functional form of

ψ(Q,hn;pp,pf ) may be different for n in hn being odd or even. Denote by ψ±(Q,hn) the
ψ(Q,hn;pb,pf ) for n in hn being { odd

even
}. Then the relation of (11) should be read as

	(Q,hn)|0, n〉 = 0, 	(x, y) :=
{

x · ψ+(x, y)ψ−(x, y) (for pf even),

ψ+(x, y)ψ−(x, y) (for pf odd),

where use has been made of the relation of Q|0;n〉 ∝ |1;n〉. By Lemma 4 and (9), it is
found that the minimum polynomial φ(x, y) of Q and H is given by the divisor of 	(x,y).
Noticing that ψ±(x, y) is monic with respect to x, we find that the minimum polynomial
φ(x, y) can be chosen as x-monic.

Once φ(x, y) can be chosen as x-monic, it will be found that the x-degree of φ(x, y)

(denoted by degx φ(x, y)) is restricted to such that

pf + 1 ≤ degx φ(x, y) ≤ pf + 1 + 2p̃f . (14)

First, we show degx φ(x, y) ≤ pf + 1 + 2p̃f . Recalling that φ(x, y) is given by the divisor
of F(x, y), we obtain degx φ(x, y) ≤ degx 	(x, y). Noticing that degx ψ±(x, y) = 2p̃f , we
get degx φ(x, y) ≤ pf + 1 + 2p̃f . Next, we show pf + 1 ≤ degx φ(x, y). To show this, it is
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convenient to use Proposition 2. Let n denote degx φ(x, y). Expanding φ(λQ + λ−1 Q†,H)

with respect to λ, and recalling that φ(x, y) is chosen as x-monic, we find that the coefficient
of λn is given by Qn, which should be vanishing by Proposition 2. Recalling that b† is
commutative with f and that b† cannot be nilpotent, we find that the condition of Qn = 0
implies that f n = 0. On the other hand, for a given pf , f satisfies f pf +1 = 0 with f pf �= 0.
This, together with the condition of f n = 0 leads to n ≥ pf + 1 (if n ≤ pf , this would
violate the condition of f pf �= 0).

Now we are in a position to unravel the pf and pb-dependence of degx φ(x, y). To begin
with, we concentrate on the case of pb = 1.

Lemma 5 For P-PSUSY with pb = 1, the x-degree of the minimum polynomial φ(x, y) is
given by

degx φ(x, y) = pf + 1 (for pb = 1).

Proof For pb = 1 (or equivalently, ν = 0), the functional form of c
(b)
k is the same, despite k

being odd or even. Thus it follows that ψ+(x, y) = ψ−(x, y), so that the relation of (11) can
be rewritten as

	0(Q,hn)|0, n〉 = 0, 	0(x, y) :=
{

x · ψ+(x, y) (for pf even),

ψ+(x, y) (for pf odd).

In this case, the minimum polynomial φ(x, y) is given by the divisor of 	0(x, y), so
that we get degx φ(x, y) ≤ degx 	0(x, y). Recalling that degx ψ+(x, y) = 2p̃f , we ob-
tain degx 	0(x, y) = pf + 1. This, together with pf + 1 ≤ degx φ(x, y) by (14), leads to
degx φ(x, y) = pf + 1. �

Considering that degx φ(x, y) = degx 	0(x, y), we find that

φ(x, y) = 	0(x, y) (for pb = 1).

The next thing is to deal with the case of pb �= 1. Denote by φ̂(x, y) the same func-
tional form of the minimum polynomial for pb = 1, that is, φ̂pf ,pb

(x, y) := φpf ,pb=1(x, y)

(the symbol “hat” is introduced so that φ̂(x, y) does not necessarily represent the minimum
polynomial unless pb = 1). Recalling that eigenvalues of the Hermitian operator R are given
by ±(pb − 1), we can reduce φ̂(Q,H) to the form

φ̂(Q,H) = (R odd) + (R even), (15)

where (R odd) and (R even) represent the polynomials of R such that is odd and even with
respect to R, respectively. Recalling that φ̂(x, y) ∈ Q[x, y] by Lemma 5 and using (3), we
find it trivial that the right-hand side of (15) should satisfy

X = X†, [Q,X] = [H,X] = 0, (16)

where X := (R odd) + (R even).
Noticing from (13) that φ̂(x, y) (= 	0(x, y)) is x-odd for pf even, or x-even for pf

odd, and using the repeated application of the identity Q2 = Q2 + Q†2 + (1 − R)Hf +
2A(f )Hb , we can write φ̂(Q,H) as Q · F(Q2 + Q†2,R, A(f ),Hb,Hc) for pf even, or
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F̃ (Q2 + Q†2,R, A(f ),Hb,Hc) for pf odd, where F and F̃ represent (noncommutative)
polynomial over R such that F = F † and F̃ = F̃ †. Noticing further that A(f ) can be written
as the polynomial of H 2

f over R (see Appendix), and using the commutativity [R,Hb] =
[R, Q2] = [R, A(f )] = [R,Hf ] = 0 and R2 = ν2, we can rewrite (R odd) and (R even) as

(R odd) =
{

Q · F1(Q
2,Hb,Hf ;ν2)R (for pf even),

F̃1(Q
2,Hb,Hf ;ν2)R (for pf odd),

(R even) =
{

Q · F2(Q
2,Hb,Hf ;ν2) (for pf even),

F̃2(Q
2,Hb,Hf ;ν2) (for pf odd),

where Fi, F̃i (i = 1,2) represent certain (noncommutative) polynomials over R such that
Fi = F

†
i , F̃i = F̃

†
i and QF1 = (QF1)

†,QF2 = (QF2)
†.

3.1 For pf Even

First, we deal with the case of pf even. In this case, we have the following proposition:

Proposition 6 For pf even, we have

{
(R odd) = 0,

(R even) = φ′(Q,H) such that φ′(x, y) ∈ R[x, y].

Due to degx φ′(x, y) < degx φ̂(x, y), we obtain

degx φ(x, y) = pf + 1 (for pf even).

Proof First, we show that (R odd) = 0. Noticing the relation of (QF1R)† = R†(QF1)
† =

RQF1 = −QF1R, where use has been made of {R,Q} = [R,F1] = 0, and recalling that
(QF2)

† = QF2, we find from QF1R +QF2 = (QF1R +QF2)
† by X = X†, that (R odd) =

0. Next, we show that F2(Q
2,Hb,Hf ;ν2) can be written as a polynomial of Q and H .

From the condition of [Q,F2] = 0 by [Q,(R even)] = 0 (while the condition of [H,F2] =
0 is automatically satisfied due to [H,Q] = [H,Hb] = [H,Hf ] = 0), it is implied from
[Q,Hf ] = Q − Q† and [Q,Hb] = Q† − Q, that the dependence of F2 on Hb,Hf should can
given by the combination of Hb + Hf , that is, F2 can be written as a polynomial of Q and
H , so can be (R even) (denoted by φ′(Q,H)). Finally, we show that degx φ′(x, y) < pf +
1 (= degx φ̂(x, y)). Originally, (R even) is derived from expanding Qpf +1 with respect to
Q, Q†,Hb,Hf , under the boundary condition of Qpf +1 = (Q†)pf +1 = 0. Thus Q-degree of
(R even) turns out to be less than that of Qpf +1, that is, degx φ′(x, y) < pf + 1. Eventually,
for pf even, the φ(x, y) is given by φ̂(x, y) − φ′(x, y), with degx φ(x, y) = degx φ̂(x, y) =
pf + 1. �

Recalling that if ψ+(x, y) = ψ−(x, y), as is realized in the case of pb = 1, then
degx φ(x, y) = pf + 1, we expect the converse. This will be found to be true for pf even,
that is, the minimum polynomial φ(x, y) is given by 	0(x, y), as in the case of pb = 1:

φ(x, y) = 	0(x, y) (for pf even). (17)
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Table 4 Coefficients α
(k)
i

for pf even

k i 1
(p̃f +1)(2p̃f +1)

α
(k)
i

1 0 0

1 − 2
3

2 0 1
105 γ

1 0

2 2
45 (2p̃f − 1)(5p̃f + 6)

3 0 0

1 − 2
945 γ γ ′ − 64

2205 (p̃f + 2)(p̃f + 3)(2p̃f − 1)(2p̃f + 3)

2 0

3 − 4
2835 (2p̃f − 1)(2p̃f − 3)(35p̃2

f
+ 91p̃f + 60)

Actually, for pf even, the coefficient ak(y) in (13) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

a1(y) = −∑p̃f

i=1 Si ,

a2(y) = ∑
1≤i<j≤p̃f

Si Sj − ∑p̃f −1
i=1 Pi ,

a3(y) = −∑
1≤i<j<k≤p̃f

Si Sj Sk − ∑p̃f −1
i=1 Pi (Si + Si+1 − ∑p̃f

i=1 Si ),

(18)

and so on, where Si = e
(n)

2i−1 + e
(n)

2i and Pi = e
(n)

2i e
(n)

2i+1 (at the end of the calculation, n in e
(n)
i

should be replaced by y − ν−1
2 + p̃f by (8)). The double and triple summations can be rewrit-

ten using single summations as
∑

1≤i<j≤p̃f
Si Sj = 1

2 (Z2
1 − Z2) and

∑
1≤i<j<k≤p̃f

Si Sj Sk =
1
6 (Z3

1 − 3Z1Z2 + 2Z3), where Zk := ∑p̃f

i=1 S k
i (k = 1,2, . . .). It is confirmed that ak(y) is

uniquely determined, despite n in e
(n)
k being odd or even. Explicitly, the coefficients α

(k)
i in

ak(y) (see (13)) are summarized in Table 4, where γ = (p̃f + 2)(9 + 7ν2 − 12p̃f (1 + p̃f ))

and γ ′ = (2p̃f − 3)(3p̃f + 5) + 32
7 (p̃f + 3).

From Table 4, it is expected that α
(k)
i = 0 for all (k, i) ∈ (2N,2N − 1) and (2N − 1,2N),

which indicates that ak(y) be y-odd for k odd, or y-even for k even. This will be found to
be true for pf even, that is

ak(−y) = (−1)kak(y) (for k = 0,1,2 . . . , p̃f ). (19)

The relation of (19) is easily derived from Proposition 2. Choosing λ = i and taking the
lower sign, we find that the minimum polynomial φ(x, y) satisfies

φ(ix,−y) = c · φ(x, y), (20)

where c = ipf +1 = i(−1)p̃f . This is because if φ(x, y) is the minimum polynomial of Q

and H , then φ(ix,−y) is the minimum polynomial, and vice versa. Recall that for pf

even, the minimum polynomial φ(x, y) is given by xψ(x, y;pb,pf ) with ψ(x, y;pb,pf ) =
∑p̃f

k=0 ak(y)x2(p̃f −k). Substituting this relation into (20) and comparing the coefficient of
x2(p̃f −k), we obtain (19).
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Table 5 Coefficients α
(k)
i

for pf odd

k i α
(k)
i

1 0 ± 1
2 ν

1 − 1
3 (4p̃2

f
− 1)

2 0 1
120 ν2(16p̃3

f
+ 16p̃2

f
− 24p̃f − 9) − 1

70 (p̃f + 1)(4p̃2
f

− 1)(4p̃2
f

− 9)

1 ∓ 1
6 ν(4p̃2

f
+ 4p̃f + 3)

2 1
90 (2p̃f − 3)(2p̃f − 1)(2p̃f + 1)(10p̃f + 7)

3.2 For pf Odd

Finally, we consider the case of pf odd. Different from the case of pf even, (R odd) in
(15) is not vanishing unless pb = 1, so that the right-hand side of (15) (denoted by X)
cannot be written as a polynomial of Q and H . To obtain the polynomial relation be-
tween Q and H , we should eliminate R by squaring it, so that the x-degree of the min-
imum polynomial should be larger than pf + 1. This implies that the functional form of
ψ(x, y;pb,pf ) is not uniquely determined; otherwise, the minimum polynomial would be
given by ψ(x, y;pb,pf ), where degx ψ(x, y;pb,pf ) = pf + 1 is satisfied. Actually, for
pf odd, the coefficients ak(y) can be written as in a similar way to (18), where Si , Pi are
replaced by Si → S ′

i = e
(n)

2i−2 + e
(n)

2i−1, Pi → P ′
i = e

(n)

2i−1e
(n)

2i (at the end of the calculation, n

in e
(n)
i should be replaced by y − ν

2 + p̃f , due to the relation of (8)). As a result, a1(y) and
a2(y) are calculated, as is summarized in Table 5, where the complex sign comes from n in
e

(n)
i being { odd

even
}, respectively.

Notice that for (k, i) ∈ (2N,2N−1), (2N−1,2N), α(k)
i is ν-odd. The reason is as follows.

Suppose that (R odd) term is vanishing, as in the case of pf even, the (R even) term can
be written as a polynomial of Q and H , so that ψ+(x, y) = ψ−(x, y). In this case, the
minimum polynomial φ(x, y) is given by 	0(x, y), so that the relation of (19) should hold,
as is analogous to the case of pf even. Taking the contraposition of the above statement, we
find that there is a (R odd) term from the fact that φ(x, y) is not given by 	0(x, y) for pf

odd.
Denote the greatest common divisor of ψ+(x, y) and ψ−(x, y) by gcd (ψ+,ψ−), which

can be chosen as x-monic, due to the x-monicness of ψ±(x, y). Then by Lemma 1, the
minimum polynomial is given by

φ(x, y) = 	(x,y)

gcd (ψ+,ψ−)
(for pf odd). (21)

To obtain the gcd (ψ+,ψ−), it is convenient to calculate the Gröbner basis of ψ+(x, y) and
ψ−(x, y). One of the basic properties of the Gröbner basis is that the common root of the
original set of polynomials is the same as the common root of the corresponding Gröbner
basis. If ψ+(x, y) and ψ−(x, y) have a common factor, there should exist a common root.
Denote ψ±(x, y) by

ψ±(x, y) = ψ(+)(x, y) ± ψ(−)(x, y),

where ψ(±)(x, y) = 1
2 (ψ+(x, y) ± ψ−(x, y)). For pf = 1,3,5,7, the explicit form of

ψ(±)(x, y) is summarized in Tables 6 and 7, with the Gröbner basis of ψ+(x, y) and
ψ−(x, y) given in Table 8.
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Table 6 ψ(+) for pf odd. Note that ψ(+) is even with respect to ν

pf ψ(+)(x, y)

1 x2 − y

3 (x2 − y)(x2 − 9y) − 9 + 9
4 ν2

5 (x2 − y)(x2 − 9y)(x2 − 25y) − 36(9x2 − 25y) + 9
4 ν2(11x2 − 75y)

7 (x2 − y)(x2 − 9y)(x2 − 25y)(x2 − 49y) − 45[22x2(3x2 − 62y) + 245(10y2 − 9)]
+ 5

2 ν2[x2(47x2 − 1478y) + 2205(3y2 − 5)] + (3·5·7)2

24 ν4

Table 7 ψ(−) for pf odd. Note that ψ(−) is odd with respect to ν

pf ψ(−)(x, y)

1 1
2 ν

3 ν(x2 − 9y)

5 3
2 ν[(x2 − 9y)(x2 − 25y) − 300] + (3·5)2

23 ν3

7 2ν[(x2 − 9y)(x2 − 25y)(x2 − 49y) − 225(13x2 − 245y)] + 25
2 ν3(17x2 − 441y)

Table 8 Gröbner basis of ψ+(x, y) and ψ−(x, y) with respect to x and y. Notice that G.B. (ψ+,ψ−) =
G.B. (ψ(+),ψ(−))

pf G.B. (ψ+(x, y),ψ−(x, y))

1 {ν,ψ(+)}
3 {ν(ν2 − 4),ψ(−),ψ(+)}
5 {ν(ν2 − 4)(ν2 − 16), ν(ν2 − 4)(x2 − 25y),ψ(−),ψ(+)}
7 {ν(ν2 − 4)(ν2 − 16)(ν2 − 36), ν(ν2 − 4)(ν2 − 16)(x2 − 49y),

ν(ν2 − 4)[4(x2 − 25y)(x2 − 49y) + 245(ν2 − 36)],ψ(−),ψ(+)}

From Table 8, it is found that the Gröbner basis G.B. (ψ+,ψ−) can be written as in the
form

G.B. (ψ+,ψ−) = {ψ0,ψ1,ψ2, . . . ,ψp̃f
}, (22)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ψ0 = ∏(pf −1)/2
n=1 (ν2 − (2n)2) · ν,

ψ1 = ∏(pf −3)/2
n=1 (ν2 − (2n)2) · ν(x2 − p2

f y),

...

ψp̃f −1 = ψ(−),

ψp̃f
= ψ(+),

with ψk satisfying
{

ψk ∝ ∏p̃f −1−k

n=1 (ν2 − (2n)2) · ν (for k = 0,1, . . . , p̃f − 1),

degx ψk = 2k (for k = 0,1, . . . , p̃f ).
(23)
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Suppose that ψ+(x, y) and ψ−(x, y) have a common divisor, there should exist a common
root, which is the same as the common root of the corresponding Gröbner basis. Thus from
ψ0 = 0, ψ+(x, y) and ψ−(x, y) have a common divisor, if and only if ν = 0,2,4, . . . , pf −1.
For ν = 2k (k = 1,2, . . . , p̃f − 1), it is found that ψ0,ψ1, . . . ,ψp̃f −1−k are all vanishing,
due to the first relation of (23). This, together with the second relation of (23), implies that
G.B. (ψ+,ψ−) = {ψp̃f −k}, where we have used G.B. (ψ+,ψ−) = G.B. (ψp̃f −k, . . . ,ψp̃f

).
For ν otherwise, it follows that ψ0 �= 0, so that G.B. (ψ+,ψ−) = {1}. To summarize, we find
that gcd (ψ+,ψ−), which is given by G.B. (ψ+,ψ−), can be written as

gcd (ψ+,ψ−) =
{

ψp̃f −k (for ν = 2k with k = 0,1, . . . , p̃f − 1),

1 (for ν otherwise).
(24)

This, together with (21), leads to

degx φ(x, y) =
{

pf + 1 + ν (for ν = 0,2,4, . . . , pf − 1),

2(pf + 1) (for ν otherwise).

However, the relation of (22) (with ψk satisfying (23)) is not rigorously derived for all
odd pf . This is just expected from Table 8. So we have the following problem:

Problem 7 For P-PSUSY with pf odd, show that G.B. (ψ+,ψ−) can be written as in (22),
with ψk satisfying (23).

As is found from Tables 6 and 7, it seems to be too complicated to obtain ψ±(x, y)

for a general pf ∈ 2N − 1. Thus, we should solve Problem 7 without calculating ψ±(x, y)

explicitly.

4 Homogeneity and Conformality

4.1 Homogeneity

As an application of P-PSUSY, we try to restrict the spin degree of freedom, s, which is
related to pf as s = pf /2. In ordinary quantum field theory, however, there is no restric-
tion on the spin of the elementary particle; any integer or half-integer spin-s state can be
represented by the set of 2s fermionic creation and annihilation operators. Suppose that the
spin degree of freedom can be restricted in the context of P-PSUSY, then some reasonable
condition should be imposed on the minimum polynomial φ(x, y).

Recall that as in the ordinary SUSY, the Hamiltonian H and the parasupercharge Q

are commutative, so that there is a simultaneous eigenstate of H and Q (whose eigenval-
ues we denote by h and q , respectively). In the ordinary SUSY, H is given by the square
of the supercharge Q, so that h = q2 is satisfied. In the P-PSUSY, we assume an anal-
ogous relation: all the eigenvalues h are given by being proportional to q2. In this case,
the minimum polynomial φ(x, y) of Q and H can be written as φ(x, y) = ∏

i (x
2 − κiy),

where κi ∈ R represents some proportional constant, so that the φ(x, y) satisfies the ho-
mogeneity such that ∀λ ∈ R, φ(λx,λ2y) = λnφ(x, y), where n = degx φ(x, y) (recall that
φ(x, y) can be chosen as x-monic). Denote by �(h) the set of all the homogeneous poly-
nomials such that �(h) = {f (x, y) ∈ R[x, y]|∃n ∈ N,∀λ ∈ R, f (λx,λ2y) = λnf (x, y)}. In
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Table 9 Values of pf ,pb for each element of � ∩ �(h) , where r represents any non-negative real number.
The value of p represents the order of the paragrassmannian θ (see next subsection)

Element in � ∩ �(h) (pf ,pb) p

x2 − y (1,1) 1

x(x2 − 4y) (2, r) 2

x(x2 − 4y)(x2 − 16y) (4,4) 4

a similar way, denote by � the set of all the minimum polynomials for the P-PSUSY:
� = {φpf ,pb

(x, y)|pf ∈ N,pb ≥ 0}.
Before discussing the physical meaning of the homogeneity of the minimum polynomial

φ(x, y) for the P-PSUSY (which will be done in the next subsection), we will proceed to
show that the homogeneity of φ(x, y) restrict the its functional form to such that

� ∩ �(h) = {x2 − y, x(x2 − 4y), x(x2 − 4y)(x2 − 16y)}. (25)

For each element of � ∩ �(h), the values of pf and pb are summarized in Table 9.
To show (25), it should be noticed that the homogeneity of the minimum poly-

nomial φ(x, y) indicates the homogeneity of ψ(x, y;pb,pf ) as ψ(λx,λ2y;pb,pf ) =
λ2p̃f ψ(x, y;pb,pf ). Thus for all λ ∈ R, we get, using (13), the following equivalences:

φ(λx,λ2y) ≡ λnφ(x, y) ⇐⇒ ak(λ
2y) ≡ λ2kak(y) (k = 0,1, . . . , p̃f )

⇐⇒ α
(k)
i = 0 (i = 0,1, . . . , k − 1; k = 1, . . . , p̃f ). (26)

4.1.1 For pf Even

First, we solve the last statement of (26) for pf ∈ 2N (so that p̃ ∈ N). For pf = 2
(or p̃f = 1), we have only one requirement: α

(1)

0 = 0, which is automatically satisfied
(see Table 4). Thus, the homogeneity of φ(x, y) is realized for pf = 2. In this case,
φ(x, y) = x(x2 − 4y), despite the value of ν. For pf = 4 (or p̃f = 2), we have three
requirements: α

(2)

0 = α
(1)

0 = α
(2)

1 = 0. The condition of α
(2)

0 = 0 leads to γ = 0. The re-
maining conditions of α

(1)

0 = α
(2)

1 = 0 are automatically satisfied. Thus, for pf = 4, the
homogeneity of φ(x, y) is realized for pf = 4, where ν = 3 is required by γ = 0, so that
φ(x, y) = x(x2 − 4y)(x2 − 16y). For pf = 6,8, . . . (or p̃f = 3,4, . . .), at least, another
condition of α

(3)

1 = 0 is required, other than γ = 0 by α
(2)

0 = 0. However, α
(3)

1 cannot be van-
ishing under the condition of γ = 0, so that the homogeneity of φ(x, y) cannot be realized
for pf = 6,8, . . .

4.1.2 For pf Odd

For pf ∈ 2N − 1, we will make an analogous procedure to the case of pf ∈ 2N. For pf = 1
(or p̃f = 1), we have only one requirement: α

(1)

0 = 0, which leads to ν = 0. Thus for pf = 1,
the homogeneity of φ(x, y) is realized under the condition of ν = 0, in which φ(x, y) is
given by x2 − y. For pf = 3,5, . . . (or p̃f = 2,3, . . .), another condition of α

(2)

0 = 0 is
required, other than the condition of ν = 0 by α

(1)

0 = 0. However, α
(2)

0 cannot be vanishing
under the condition of ν = 0 (see Table 5), so that the homogeneity of φ(x, y) cannot be
realized for pf = 3,5, . . .
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4.2 Conformality

In this subsection, the physical meaning of the homogeneity of φ(x, y) is discussed. His-
torically, the homogeneous polynomial relation between the general parasupercharge Q and
Hamiltonian H was first introduced as a parasuperalgebra [17], which is given by generaliz-
ing the grassmannian variable θ in the ordinary superalgebra to the paragrassmannian such
that θp+1 = 0 (for p ∈ N). Under the maps H �→ ∂/∂t and Q �→ ∂/∂θ + θ · ∂/∂t (in the
Euclidean space with t ∈ R), H and Q correspond to the superconformal generators L1 and
G1/2, respectively. More generally, let Lm and Gr be given by

Lm = t−m+1 ∂

∂t
+ 1

4
(1 − m)t−m

(
θ

∂

∂θ
− ∂

∂θ
θ

)
,

Gr = t−r+1/2

(
∂

∂θ
+ θ

∂

∂t

)
+ 1

2
(r − 1/2)t−r−1/2

(
θ

∂

∂θ
θ − θ2 ∂

∂θ

)
,

then it is found that the generators Lm (m ∈ Z) and Gr (r = Z + 1
2 ) satisfy [17]

[Lm,Ln] = (m − n)Lm+n (for all p ∈ N), (27)

[Lm,Gr ] = m − 2r

2
Gm+r (for all p ∈ N), (28)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

GrGs − Lr+s + (perm.) = 0 (p = 1),

Gr(GsGt − 4Ls+t ) + (perm.) = 0 (p = 2),

GrGsGtGu − 10GrGsLt+u + 9Lr+sLt+u + (perm.) = 0 (p = 3),

Gr(GsGtGuGv − 20GsGtLu+v + 64Ls+tLu+v) + (perm.) = 0 (p = 4),

(29)

and so on, where (perm.) represents all the permutation with respect to (r, s, . . .). Notice
that for p = 1, Lm and Gr satisfy the (centerless) Neveu-Schwarz algebra, in which case,
we may say that Q and H satisfy the superconformality.

Now we obtain for a general p ∈ N, the polynomial relation of Q and H , which corre-
spond to G1/2 and L1, respectively. By (28) and (29), the polynomial relation of G1/2 and
L1 (more generally, Gr and L2r for all r ∈ Z + 1

2 ) is given by, other than the commutativity
[Gr,L2r ] = 0, φ(c)

p (Gr,L2r ) = 0 such that

φ(c)
p (x, y) =

{∏(p−1)/2
n=0 (x2 − (p − 2n)2y) (p ∈ 2N − 1),

∏p/2−1
n=0 (x2 − (p − 2n)2y) · x (p ∈ 2N).

(30)

It is apparent that φ(c)
p (x, y) satisfies the homogeneity φ(c)

p (λx,λ2y) = λp+1φ(c)
p (x, y) for all

λ ∈ R. Thus, it is expected that under the P-PSUSY, the parasuperconformality of Q and
H be equivalent to the homogeneity of the minimum polynomial of Q and H in the sense
that � ∩ �(c) = � ∩ �(h), where �(c) represents all the parasuperconformal polynomials:
�(c) = {φ(c)

p (x, y)|p ∈ N}. This expectation turns out to be true.

Proposition 8 � ∩ �(c) = � ∩ �(h).

Proof Since φ(c)
p (x, y) satisfies the homogeneity, it follows that φ(c)

p (x, y) ∈ �(h), so that
�(c) ⊂ �(h). Hence we get � ∩ �(c) ⊂ � ∩ �(h). Noticing that all the elements in � ∩ �(h)
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(which is given by (25)) belong to �(c) (see Table 9), we obtain �∩�(h) ⊂ �(c). Hence, we
find that � ∩ �(h) = � ∩ (� ∩ �(h)) ⊂ � ∩ �(c). This, together with � ∩ �(c) ⊂ � ∩ �(h),
leads to � ∩ �(c) = � ∩ �(h). �

However, the physical meaning of the parasuperconformality of Q and H is still not clear.
Here we discuss the role of parasuperconformality of Q and H , focusing on the relation of
φ(c)

p (Q,H) = 0. Denote by h
(p)
n and |h(p)

n 〉 the n-th eigenvalue of H and the corresponding
eigenstate for the paragrassmannian θ of order p, respectively. Recall that [Q,H ] = 0, so
that there is a simultaneous eigenstate of Q and H . For the simultaneous eigenstate such
that the eigenvalue of H is given by h

(p)
n , the eigenvalue of Q (denoted by q(p)) satisfies the

polynomial equation of φ(c)
p (q(p), h

(p)
n ) = 0. Since degx φ(c)

p (x, y) = p + 1, it is found that

the q(p) has (p + 1) roots (denoted by q
(p)

0 , q
(p)

1 , . . . , q
(p)
p ), so that the H -eigenstate |h(p)

n 〉 is
(p+1)-fold degenerate, as is similar to the (pf +1)-fold degeneracy of H for the P-PSUSY
of parafermionic order pf . To distinguish the degeneracy of |h(p)

n 〉, we introduce parameters
k (for k = 0,1, . . . , p) such that Q|h(p)

n , k〉 = q
(p)

k |h(p)
n , k〉 with H |h(p)

n , k〉 = h
(p)
n |h(p)

n , k〉.
Then, |h(p)

n 〉 can be written as a superposition of the eigenstates |h(p)
n , k〉 (for k = 0, . . . , p),

that is, |h(p)
n 〉 ∈ �

(p)
n := {∑p

k=0 ck|h(p)
n , k〉|(c0, . . . , cp) ∈ C

p+1}. For a given p ∈ N, the Fock
space �(p) is given by a linear combination of all the eigenstates |h(p)

n 〉 (for n = 1,2, . . .):

�(p) =
{ ∞∑

n=1

cn|h(p)
n 〉|c1, c2, . . . ∈ C

}

.

Noticing the relation of φ(c)
p (x, y) = φ

(c)

p−2(x, y)(x2 − p2y), we can choose q
(p)

k (for k =
0,1, . . . , p − 2; k �= p − 1,p) as the roots of φ

(c)

p−2(x,h
(p)
n ) = 0. Define the subspace �̃(p) of

�(p) by

�̃(p) =
{ ∞∑

n=1

cn|h̃(p)
n 〉|c1, c2, . . . ∈ C

}
⊂ �(p),

where |h̃(p)
n 〉 ∈ �̃

(p)
n := {∑p−2

k=0 ck|h(p)
n , k〉|(c0, . . . , cp−2) ∈ C

p−1} ⊂ �
(p)
n .

Suppose that the n-th eigenvalue h
(p)
n of H is independent of the order p, that is

h(p)
n = h(p−2)

n .

(For the P-PSUSY, the corresponding relation can be realized for pb −pf = const., see (8).)
In this case, q

(p)

k (for k = 0, . . . , p − 2) are also the roots of φ
(c)

p−2(x,h
(p−2)
n ) = 0, so that

the linear map ϕ : �̃(p) → �(p−2) over C by ϕ(|h(p)
n , k〉) = |h(p−2)

n , k〉 (for n ∈ N; k =
0,1, . . . , p − 2) is commutative with Q and H :

�̃(p) Q,H−→ �̃(p)

↓ ϕ ↓ ϕ

�(p−2) Q,H−→�(p−2),

(31)

provided that we should arrange the roots of φ
(c)

p−2(x,h
(p−2)
n ) = 0 as q

(p)

k = q
(p−2)

k (for k =
0, . . . , p − 2). The commutative diagram of (31) indicates that the spectrum of Q and H is
invariant under the linear map ϕ, which is apparently bijective. In this sense, the subset �̃(p)
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of �(p) can be identified with �(p−2), namely, �̃(p) ∼= �(p−2). Thus, �(p) can be decomposed
into

�(p) = ��(p) ⊕ �̃(p)

∼= ��(p) ⊕ �(p−2), (32)

where ��(p) := �(p) \ �̃(p). Notice that the degeneracy of the energy eigenstate in ��(p)

is equal 2 [= (p + 1) − (p − 1)] for all p ≥ 1.
Here, it should be noticed that the degeneracy of the energy eigenstate in �(p) (which

amounts to p + 1) is closely related to the spin degree of freedom for a massive particle.
As is shown in Table 9, the value of p can be identified with pf , half of which represents
the highest weight of the irreducible representation of su(2) ∼= s0(3), so that p + 1 may
represent the angular momentum degree of freedom. Considering further that the orbital
angular momentum may be neglected due to the one spatial dimensionality, we can regard
p + 1 as the spin degree of freedom 2s + 1 for a massive particle with spin s. In this sense,
we have

p = pf = 2s.

Denote by F (s) and F(s) a massive field with spin s and the corresponding Fock space gener-
ated by F (s), respectively. For a free particle, the energy eigenstate |n〉 in F(s) is (2s +1)-fold
degenerate, as is the energy eigenstate in �(p). Then we have the isomorphism:

�(p) ∼= F(s) (for p = 2s). (33)

Substituting (33) into (32), we find that F(s) can be decomposed into

F(s) ∼= �F(s) ⊕ F(s−1), with �F(s) ⊂ F(s). (34)

This is the prediction of the parasuperconformality of Q and H : the decomposition of F(s).
Suppose that F (s) can be represented under the Lorentz group as

F (s) :
{

( s
2 , s

2 ) (for s ∈ N),

( 1
2 , s − 1

2 ) ⊕ (s − 1
2 , 1

2 ) (for s ∈ N + 1
2 ),

as is the Dirac field (s = 1/2), the electro-weak gauge field (s = 1), the Rarita-Schwinger
field (s = 3/2), and the (traceless) metric tensor (s = 2). In this case, the spin degree of
freedom of the corresponding massless field (denoted by F (s)

0 ) turns out to be given by 2
(for s ≥ 1), or 1 (for s = 0,1/2). Recall that the spin degree of freedom of �F (s) is given by
2 [= (2s + 1) − (2s − 1)] for s ≥ 1/2, and notice the trivial inclusion relation of F(s)

0 ⊂ F(s).
Then it seems reasonable that F (s)

0 may be chosen as a candidate of �F (s) for s ≥ 1. More
generally for s ≥ 1/2, we have

{
�F (s) = F (s)

0 (for s �= 1
2 ),

�F (s) �= F (s)

0 (for s = 1
2 ).

(35)

For s = 1/2, the relation of �F (s) �= F (s)

0 comes from the difference of the spin degree of
freedom between �F (s) and F (s)

0 ; the spin degree of freedom of �F (s) is given by 2, while
that of F (s)

0 is given by 1.
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In the rest of this subsection, we discuss the physical meaning of the relation of (34) with
(35). First, we consider the case of s ∈ N. In this case, it will be shown that the relation of
(34) with (35) can be interpreted as a (gauge) boson mass generalization through the Higgs
mechanism.

For s = 1, F (s) is chosen as one of the massive gauge bosons (W±,Z0). At high temper-
ature where the electro-weak U(1) × SU(2) gauge symmetry is not broken, the gauge boson
remains massless. Considering that the spin degree of freedom of the corresponding mass-
less field F (s)

0 is given by 2, we can choose F (s)

0 as �F (s). In this case, F (s−1) corresponds
to one of the components (θ1, θ2, θ3) of the original SU(2)-doublet complex scalar Higgs
field H = ( θ1+iθ2

h+iθ3

)
, where h, representing the standard Higgs boson, is not coupled with the

photon, so that the photon remains massless.
For s = 2, we can make an analogous discussion to the case of s = 1. The mass of a

(gauge) field F (s) is generated by the coupling of the corresponding massless field F (s)

0 with
the “vector Higg” field F (s−1). If the coupling of F (s)

0 with F (s−1) is null, as is the case of the
photon for s = 1, the (gauge) field F (s)

0 may remain massless. This situation may be applied
to the graviton, although the null-coupling Higgs F (s−1) has not been specified yet.

Finally, we deal with the case of s ∈ N + 1
2 . In this case, the physical meaning of the

relation of (34) is less clear, compared to the case for s ∈ N. However, in a practical case
where the P-PSUSY is imposed on the conformal PSUSY, the value of s is restricted to either
1/2,1, or 2 (see Table 9). So we restrict ourselves to the case of s = 1/2 only. Different from
the case of s �= 1/2, F(s) cannot be decomposed into F(s)

0 and F(s−1), due to the vanishing
of F(s−1). This strongly suggests that for s = 1/2, the corresponding massless field F (s)

0 in
itself not exit. Actually, all the leptons and quarks are observed to be massive.

5 Summary

We have calculated the minimum polynomial φ(x, y) of Q and H for single-mode
P-PSUSY. For pf even, the φ(x, y) can be written as in (17). For pf odd, the φ(x, y) is
given by (21), with gcd (ψ+,ψ−) written as (24) through the relation of (22). However, the
relation of (22) has not been derived rigorously for all pf ∈ 2N − 1, so we have Problem 7.
As pf increase, ψ±(x, y) tends to be too complicated to deal with. Thus it is favorable to
solve Problem 7 without obtaining ψ±(x, y) explicitly, although this has not been performed
yet.

As an application of P-PSUSY, we have tried to restrict the value of pf under some
reasonable condition. Suppose that φ(x, y) satisfies the homogeneity ∀λ ∈ R, φ(λx,λ2y) =
λnφ(x, y) (where n = degx φ(x, y)), then we obtain pf = 1,2,4. Considering that pf /2
represents the highest weight of the irreducible representation of su(2) ∼= so(3), we can re-
gard pf +1 as the spin degree of freedom (2s +1) for a massive particle (with spin s), where
the orbital angular momentum may be neglected due to the one spatial dimensionality. Thus,
it follows that s = 1/2,1,2. Under the P-PSUSY, it has been shown that the homogeneity of
the φ(x, y) is equivalent to the parasuperconformality of Q and H , where Q,H , and their
generalization satisfy the generalized Neveu-Schwarz algebra.

The discussion on the physical meaning of the parasuperconformality here is summa-
rized as follows. Under the parasuperconformality, the Fock space F(s) of a massive spin-s
field F (s) can be decomposed as F(s)

0 ⊕ F(s−1) for s �= 1/2, where F(s)

0 represents the Fock
space of the corresponding massless spin-s field F (s)

0 . For s = 1/2, F(s) cannot be decom-
posed into F(s)

0 and F(s−1), due to the vanishing of F(s−1), suggesting that there may not exist
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a corresponding massless field. For s ∈ N, the above decomposition can be interpreted as a
generalization of the (gauge) boson mass generation through the Higgs mechanism, where
F (s−1) plays a role of Higgs boson. If the coupling of F (s)

0 with F (s−1) is null, F (s)

0 may re-
main massless. The above spin property is comparable to the spin of the elementary particle.
For s = 1/2, all the leptons and quarks are massive. For s = 1, the masses of the W and Z
bosons are generated by the Higgs mechanism, while the photon and gluon remain mass-
less, due to the null coupling with the Higgs boson. For s = 2, there is a graviton F (s)

0 , which
is believed to be massless, although the null-coupling Higgs F (s−1) with F (s)

0 has not been
specified yet. It would be intriguing to construct a relativistic P-PSUSY model for pf = 4.

Acknowledgement The author is indebted to K. Terada for stimulating discussions.

Appendix: Derivation of A(f ) = g(H 2
f ) (g(x) ∈ R[x])

By (5), the matrix element of A(f ) and H 2
f are given by

{
[A(f )]nm = δnm[(m + 1

2 )pf − m2]
[H 2

f ]nm = 1
4 δnm(pf − 2m)2

(for n,m = 0,1, . . . , pf ). (36)

Noticing that (m + 1
2 )pf − m2 and (pf − 2m) are invariant under the substitution of m →

(pf − m), we find that A(f ) and H 2
f can be decomposed into

{
A(f ) = A ⊕ Ā

H 2
f = B ⊕ B̄

(A,B ∈ D(pf +1)/2 for pf odd),

and

{
A(f ) = A ⊕ a0 ⊕ Ā

H 2
f = B ⊕ 0 ⊕ B̄

(A,B ∈ Dpf /2 for pf even),

where a0 = pf

2 + p2
f

4 , Dn represents the set of n × n diagonal matrices over R, and the
map ¯ : Dn → Dn represents the linear map such that for Dn � X = diag (a1, a2, . . . , an),
X̄ = diag (an, . . . , a2, a1).

1. For pf odd, B,B2, . . . ,B(pf +1)/2 ∈ D(pf +1)/2 are linear independent over R, and they
form a complete set in D(pf +1)/2. Thus, A ∈ D(pf +1)/2 can be written as a linear combi-

nation of B,B2, . . . ,B(pf +1)/2, that is, A = ∑(pf +1)/2
n=1 ckB

k (ck ∈ R). In this case, A(f )

can be written as
∑(pf +1)/2

n=1 ck(H
2
f )k , due to (B̄)k = Bk .

2. For pf even, (B ⊕ 0), (B ⊕ 0)2, . . . , (B ⊕ 0)pf /2; and 1 ⊕ 1 ∈ Dpf /2 ⊕ D1 are linear
independent over R, and they are complete in Dpf /2+1. Thus for A ⊕ a0 ∈ Dpf /2+1, we

can write A ⊕ a0 = c0(1 ⊕ 1) + ∑pf /2
n=1 ck(B ⊕ 0)k , from which we obtain A = c01 +

∑pf /2
n=1 ckB

k and a0 = c0. In this case, A(f ) can be written as a01′ + ∑pf /2
n=1 ck(H

2
f )k ,

where 1′ = 1 ⊕ 1 ⊕ 1.
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